Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Biondo, Thiago Ramos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-06082020-095824/
|
Resumo: |
Uma alternativa desenvolvida para estudar associações entre os tempos de sobrevivência multivariados é o uso dos modelos baseados em funções cópulas. Neste trabalho, utilizamos o modelo de sobrevivência derivado da cópula PVF, baseada na distribuição Power Variance Function, para modelar a dependência de dados bivariados na presença de covariáveis e observações censuradas. Para fins inferenciais, realizamos uma abordagem Bayesiana usando métodos Monte Carlo em Cadeias de Markov (MCMC). Algumas discussões sobre os critérios de seleção de modelos são apresentadas. Com o objetivo de detectar observações influentes utilizamos o método Bayesiano de análise de influência de deleção de casos baseado na divergência ψ. Por fim, ilustramos a aplicabilidade dos modelos propostos a conjuntos de dados simulados e reais. |