Operators of harmonic analysis in weighted spaces with non-standard growth

Bibliographic Details
Main Author: Kokilashvili, V. M.
Publication Date: 2009
Other Authors: Samko, Stefan
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.1/11116
Summary: Last years there was increasing an interest to the so-called function spaces with non-standard growth, known also as variable exponent Lebesgue spaces. For weighted such spaces on homogeneous spaces, we develop a certain variant of Rubio de Francia's extrapolation theorem. This extrapolation theorem is applied to obtain the boundedness in such spaces of various operators of harmonic analysis, such as maximal and singular operators, potential operators, Fourier multipliers, dominants of partial sums of trigonometric Fourier series and others, in weighted Lebesgue spaces with variable exponent. There are also given their vector-valued analogues. (C) 2008 Elsevier Inc. All rights reserved.
id RCAP_c6dde1b4cfaa87e90fb6fcd55e53b62d
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11116
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Operators of harmonic analysis in weighted spaces with non-standard growthGeneralized Lebesgue SpacesL-P spacesVariable exponentMaximal-functionSingular-integralsSobolev spacesPseudodifferential-operatorsNorm inequalityL-P(Center-Dot)ExtrapolationLast years there was increasing an interest to the so-called function spaces with non-standard growth, known also as variable exponent Lebesgue spaces. For weighted such spaces on homogeneous spaces, we develop a certain variant of Rubio de Francia's extrapolation theorem. This extrapolation theorem is applied to obtain the boundedness in such spaces of various operators of harmonic analysis, such as maximal and singular operators, potential operators, Fourier multipliers, dominants of partial sums of trigonometric Fourier series and others, in weighted Lebesgue spaces with variable exponent. There are also given their vector-valued analogues. (C) 2008 Elsevier Inc. All rights reserved.Academic Press Inc Elsevier ScienceSapientiaKokilashvili, V. M.Samko, Stefan2018-12-07T14:52:33Z2009-042009-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11116eng0022-247X1096-081310.1016/j.jmaa.2008.06.056info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:20:31Zoai:sapientia.ualg.pt:10400.1/11116Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:18:39.207236Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Operators of harmonic analysis in weighted spaces with non-standard growth
title Operators of harmonic analysis in weighted spaces with non-standard growth
spellingShingle Operators of harmonic analysis in weighted spaces with non-standard growth
Kokilashvili, V. M.
Generalized Lebesgue Spaces
L-P spaces
Variable exponent
Maximal-function
Singular-integrals
Sobolev spaces
Pseudodifferential-operators
Norm inequality
L-P(Center-Dot)
Extrapolation
title_short Operators of harmonic analysis in weighted spaces with non-standard growth
title_full Operators of harmonic analysis in weighted spaces with non-standard growth
title_fullStr Operators of harmonic analysis in weighted spaces with non-standard growth
title_full_unstemmed Operators of harmonic analysis in weighted spaces with non-standard growth
title_sort Operators of harmonic analysis in weighted spaces with non-standard growth
author Kokilashvili, V. M.
author_facet Kokilashvili, V. M.
Samko, Stefan
author_role author
author2 Samko, Stefan
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Kokilashvili, V. M.
Samko, Stefan
dc.subject.por.fl_str_mv Generalized Lebesgue Spaces
L-P spaces
Variable exponent
Maximal-function
Singular-integrals
Sobolev spaces
Pseudodifferential-operators
Norm inequality
L-P(Center-Dot)
Extrapolation
topic Generalized Lebesgue Spaces
L-P spaces
Variable exponent
Maximal-function
Singular-integrals
Sobolev spaces
Pseudodifferential-operators
Norm inequality
L-P(Center-Dot)
Extrapolation
description Last years there was increasing an interest to the so-called function spaces with non-standard growth, known also as variable exponent Lebesgue spaces. For weighted such spaces on homogeneous spaces, we develop a certain variant of Rubio de Francia's extrapolation theorem. This extrapolation theorem is applied to obtain the boundedness in such spaces of various operators of harmonic analysis, such as maximal and singular operators, potential operators, Fourier multipliers, dominants of partial sums of trigonometric Fourier series and others, in weighted Lebesgue spaces with variable exponent. There are also given their vector-valued analogues. (C) 2008 Elsevier Inc. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009-04
2009-04-01T00:00:00Z
2018-12-07T14:52:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11116
url http://hdl.handle.net/10400.1/11116
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-247X
1096-0813
10.1016/j.jmaa.2008.06.056
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598597579407360