Operators of harmonic analysis in weighted spaces with non-standard growth
Main Author: | |
---|---|
Publication Date: | 2009 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.1/11116 |
Summary: | Last years there was increasing an interest to the so-called function spaces with non-standard growth, known also as variable exponent Lebesgue spaces. For weighted such spaces on homogeneous spaces, we develop a certain variant of Rubio de Francia's extrapolation theorem. This extrapolation theorem is applied to obtain the boundedness in such spaces of various operators of harmonic analysis, such as maximal and singular operators, potential operators, Fourier multipliers, dominants of partial sums of trigonometric Fourier series and others, in weighted Lebesgue spaces with variable exponent. There are also given their vector-valued analogues. (C) 2008 Elsevier Inc. All rights reserved. |
id |
RCAP_c6dde1b4cfaa87e90fb6fcd55e53b62d |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/11116 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Operators of harmonic analysis in weighted spaces with non-standard growthGeneralized Lebesgue SpacesL-P spacesVariable exponentMaximal-functionSingular-integralsSobolev spacesPseudodifferential-operatorsNorm inequalityL-P(Center-Dot)ExtrapolationLast years there was increasing an interest to the so-called function spaces with non-standard growth, known also as variable exponent Lebesgue spaces. For weighted such spaces on homogeneous spaces, we develop a certain variant of Rubio de Francia's extrapolation theorem. This extrapolation theorem is applied to obtain the boundedness in such spaces of various operators of harmonic analysis, such as maximal and singular operators, potential operators, Fourier multipliers, dominants of partial sums of trigonometric Fourier series and others, in weighted Lebesgue spaces with variable exponent. There are also given their vector-valued analogues. (C) 2008 Elsevier Inc. All rights reserved.Academic Press Inc Elsevier ScienceSapientiaKokilashvili, V. M.Samko, Stefan2018-12-07T14:52:33Z2009-042009-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11116eng0022-247X1096-081310.1016/j.jmaa.2008.06.056info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:20:31Zoai:sapientia.ualg.pt:10400.1/11116Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:18:39.207236Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Operators of harmonic analysis in weighted spaces with non-standard growth |
title |
Operators of harmonic analysis in weighted spaces with non-standard growth |
spellingShingle |
Operators of harmonic analysis in weighted spaces with non-standard growth Kokilashvili, V. M. Generalized Lebesgue Spaces L-P spaces Variable exponent Maximal-function Singular-integrals Sobolev spaces Pseudodifferential-operators Norm inequality L-P(Center-Dot) Extrapolation |
title_short |
Operators of harmonic analysis in weighted spaces with non-standard growth |
title_full |
Operators of harmonic analysis in weighted spaces with non-standard growth |
title_fullStr |
Operators of harmonic analysis in weighted spaces with non-standard growth |
title_full_unstemmed |
Operators of harmonic analysis in weighted spaces with non-standard growth |
title_sort |
Operators of harmonic analysis in weighted spaces with non-standard growth |
author |
Kokilashvili, V. M. |
author_facet |
Kokilashvili, V. M. Samko, Stefan |
author_role |
author |
author2 |
Samko, Stefan |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Kokilashvili, V. M. Samko, Stefan |
dc.subject.por.fl_str_mv |
Generalized Lebesgue Spaces L-P spaces Variable exponent Maximal-function Singular-integrals Sobolev spaces Pseudodifferential-operators Norm inequality L-P(Center-Dot) Extrapolation |
topic |
Generalized Lebesgue Spaces L-P spaces Variable exponent Maximal-function Singular-integrals Sobolev spaces Pseudodifferential-operators Norm inequality L-P(Center-Dot) Extrapolation |
description |
Last years there was increasing an interest to the so-called function spaces with non-standard growth, known also as variable exponent Lebesgue spaces. For weighted such spaces on homogeneous spaces, we develop a certain variant of Rubio de Francia's extrapolation theorem. This extrapolation theorem is applied to obtain the boundedness in such spaces of various operators of harmonic analysis, such as maximal and singular operators, potential operators, Fourier multipliers, dominants of partial sums of trigonometric Fourier series and others, in weighted Lebesgue spaces with variable exponent. There are also given their vector-valued analogues. (C) 2008 Elsevier Inc. All rights reserved. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-04 2009-04-01T00:00:00Z 2018-12-07T14:52:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/11116 |
url |
http://hdl.handle.net/10400.1/11116 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0022-247X 1096-0813 10.1016/j.jmaa.2008.06.056 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598597579407360 |