Máquina de estado líquido para previsão de séries temporais contínuas: aplicação na demanda de energia elétrica

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Grando, Neusa
Orientador(a): Centeno, Tania Mezzadri
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/896
Resumo: Um dos aspectos fundamentais da inteligência natural é sua aptidão no processamento de informações temporais. O grande desafio proposto é o de desenvolver sistemas inteligentes que mapeiem essa aptidão do comportamento humano. Neste contexto, aportam as Máquinas de Estado Líquido (LSMs), uma arquitetura neural pulsada (meio líquido) que projeta os dados de entrada em um espaço dinâmico de alta dimensão e, por conseguinte, realiza a análise do conjunto de dados de entrada através de uma rede neural clássica (unidade de leitura). Desta maneira, esta tese apresenta uma solução inovadora para a previsão de séries temporais contínuas através das LSMs com mecanismo de reinicialização e entradas analógicas, contemplando a área da demanda de energia elétrica. A metodologia desenvolvida foi aplicada no horizonte de previsão a curto prazo e a longo prazo. Os resultados obtidos são promissores, considerando o alto erro estabelecido para parada do treinamento da unidade de leitura, o baixo número de iterações do treinamento da unidade de leitura e que nenhuma estratégia de ajustamento sazonal, ou pré-processamento, sob os dados de entrada foi realizado. Até o momento, percebe-se que as LSMs têm despontado como uma nova e promissora abordagem dentro do paradigma conexionista, emergente da ciência cognitiva.