Uma abordagem baseada em redes neurais artificiais e clusterização para previsão de curto prazo da demanda de energia elétrica

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Scremin, Eric Reinoldo
Orientador(a): Fernandes, Ricardo Augusto Souza lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/11924
Resumo: Electricity plays a crucial role in the development of a country because it directly influences many sectors of the society. In this sense, the demand forecasting is of paramount importance for the maintenance and growth of the electric power systems. Currently, there are different approaches used for such forecasting. In addition, there are many variables that can influence the performance of this process. Among these variables, one can highlight those derived from the climate. Therefore, this work proposes the application of an Artificial Neural Network of Multilayer Perceptron type with Levenberg-Marquardt training algorithm, using temperature and demand as input variables. Moreover, another objective of this work is to investigate the relationship between variables, making use of the k-means clustering method on the input data. The results show that this clustering-based approach obtains predictions with low error rates. However, slightly better results were obtained when the data were not clusterized