Avaliação de técnicas de estimação da matriz origem-destino do tráfego de veículos em cidades

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Pando, Luciano Urgal lattes
Orientador(a): Lüders, Ricardo lattes
Banca de defesa: Lüders, Ricardo, Pozo, Aurora Trinidad Ramirez, Rosa, Marcelo de Oliveira
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Mestrado em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/3299
Resumo: O conhecimento do padrão de mobilidade urbana é importante tanto para oferta de serviços públicos de qualidade quanto para planejamento das cidades. Isso pode ser feito através de onerosas pesquisas de campo ou utilizando a enorme quantidade de dados provenientes da monitoração de serviços e do ambiente urbano nas cidades inteligentes. A estimação da matriz origem-destino tem por objetivo obter uma estimação de tráfego de veículos entre determinadas origens e destinos da cidade, a partir do tráfego observado nas vias públicas através de sensores ou veículos sonda. Este trabalho avalia e compara quatro técnicas de estimação da matriz origem-destino: mínimos quadrados, programação linear inteira mista (MILP), algoritmo genético e enxame de partículas (PSO). Duas cidades são consideradas como estudos de caso: Porto e Curitiba. A cidade do Porto em Portugal dispõe de dados de viagens de táxi utilizados como veículos sonda. A cidade de Curitiba dispõe de sensores de tráfego de veículos nas vias públicas. Com o uso de dados georreferenciados de mobilidade, são considerados também algoritmos de agrupamento espacial para estabelecer áreas de origem e destino e de "map matching" para caracterizar rotas associadas aos deslocamentos. Os resultados obtidos mostram ligeira superioridade para a estimação usando MILP e PSO, mas que dependem fortemente da quantidade e posição dos sensores nas vias.