Nonlinear mixed models applied to broiler chickens performance data

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Hilario, Andreia Pereira Maria
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-08052020-130156/
Resumo: Due to the large market demand for chicken meat, there is great interest in research aimed at further improving the production efficiency of this product. In this context, the study of broiler performance assists in the process of optimizing meat production and facilitates the understanding of the needs of each growth phase until the poultry slaughtering age. Although it is common to use nonlinear models to describe the growth pattern of birds, it is not common to include random effects in these models, much less the combined modeling of the variables observed in the experiment. In this work, we adjusted the Gompertz, four-parameter logistic, von Bertalanffy, and Richards growth models with fixed and random effects in their parameters to describe the growth curve of 1080 Ross broilers. Additionally, we performed the joint modeling of body weight and feed consumption variables using mixed models. Additionally, we compared the adjusted models using the AICc and BIC information criteria. The results indicated that the four- parameter mixed logistic model was the most suitable for broiler performance data for both univariate and bivariate models.