Modelo de inferência não linear para alocação de carteira

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Granja, Daniel de Moraes e Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/92/92131/tde-05042022-101739/
Resumo: O objetivo desta dissertação é apresentar um modelo de inferência não linear para alocação de carteira baseado em redes neurais multicamada. A primeira parte do modelo concentra-se na predição dos retornos dos ativos. As redes neurais utilizam os preços de mercado observados para extrair informações sobre as expectativas dos participantes do mercado ou sobre a distribuição implícita dos retornos ou o mecanismo de apreçamento do mercado, tornando um poderoso modelo de predição dos retornos. Com base nos retornos esperados, a alocação das proporções de investimentos é feita por um algoritmo de otimização com controle de risco implícito. Para implementação do modelo é utilizada uma carteira contendo ações negociadas na Bolsa de Valores de São Paulo e os resultados são comparados com o tradicional modelo de média-variância elaborado por Markowitz (1952)