Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Monteiro, Rodrigo Nunes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30092016-144225/
|
Resumo: |
In this thesis we will discuss the well-posedness and long-time dynamics of curved beam and thermoelastic plates. First, we considered the Bresse system with nonlinear damping and forcing terms. For this model we show the Timoshenko system as a singular limit of the Bresse system as the arch curvature l goes to 0 and under suitable assumptions on the nonlinearity we prove the existence of a smooth global attractor with finite fractal dimension and exponential attractors as well. We also compare the Bresse system with the Timoshenko system, in the sense of upper-semicontinuity of their attractors as l → 0. Second, we study a full von Karman system, this model accounts for vertical and in plane displacements. For this system we add a nonlinear thermal coupling and free boundary conditions. It is shown that the system, without any mechanical dissipation imposed on vertical displacements, admits a global attractor which is also smooth and of finite fractal dimension. |