Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Tavares, Eduardo Henrique Gomes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-31082020-092702/
|
Resumo: |
This thesis is concerned with large-time dynamics of non-autonomous wave equations defined on compact Riemannian manifolds with boundary. It contains three main contributions. First, we give a detailed proof of well-posedness for the wave equation with supercritical nonlinearities and time-dependent external forces, on the energy space. It is a slight generalization of known results for autonomous problems. However our arguments are different. Thus, the wave problem can be studied as a non-autonomous dynamical system since its finite energy solution flows define a continuous evolution process. Next, we establish the existence of pullback exponential attractors to this non-autonomous system, such that any section have finite fractal dimensions on the natural energy space. Finally, in the case of external force is dependent on a parameter, we study the continuity of pullback attractors with respect to it. |