Variabilidade extra-binomial: uso de métodos Bayesianos

Detalhes bibliográficos
Ano de defesa: 2001
Autor(a) principal: Junqueira, Juliano José Guimarães
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22012018-151606/
Resumo: A distribuição Binomial é freqüentemente usada quando estamos interessados em ajustar dados de contagens de y sucessos em n ensaios de um mesmo experimento aleatório, onde cada ensaio admite duas respostas: sucesso ou fracasso. Contudo, em muitas aplicações, podemos ter uma variabilidade observada dos dados maior ou menor do que a variabilidade esperada a partir de uma suposição Binomial com parâmetros n e p. Essa variabilidade superior ou inferior dos dados observados em relação a variabilidade do modelo Binomial é chamada variabilidade extra-Binomial e ela pode ser provocada por várias fontes. Alguns modelos tem sido propostos na literatura para ajustar a variabilidade extra- Binomial. Entre eles se destacam os modelos Beta-Binomial, Binomial Correlacionado e Mistura de duas distribuições Binomiais. Nesta dissertação, analisamos esses modelos sob o enfoque Bayesiano utilizando os métodos de Monte Cano em Cadeia de Markov (MCMC). Em particular utilizamos os algoritmos Gibbs Sampling e Metropolis-Hastings para obter estimadores de Monte Carlo das quantidades a posteriori de interesse dos parâmetros. Outro importante objetivo do trabalho é o estudo da variabilidade extra-Binomial na presença de covariáveis. Apresentamos exemplos com dados reais assumindo os diferentes modelos propostos e uma discriminação dos modelos via Fator de Bayes.