Detalhes bibliográficos
Ano de defesa: |
1995 |
Autor(a) principal: |
Chitta, Silvia Maria Prado |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-09042018-141428/
|
Resumo: |
O propósito deste trabalho é fazer uma análise Bayesiana conjugada e utilizar métodos amostrais na teoria de filas, em particular para os sistemas M/M/1, M/M/1/k, M/M/c e M/M/ ∞. Nosso maior interesse reside no estudo das chamadas medidas de desempenho: número de usuários no sistema e na fila, tempo de permanência no sistema e na fila e comprimento do período ocioso e ocupado, pois são essas medidas que nos fornecem o comportamento do sistema. Concentramos a atenção nas distribuições preditivas das medidas de desempenho. Na análise Bayesiana conjugada, mostramos que a escolha da priori é fundamental para que tenhamos distribuições preditivas com momentos. Mas esta escolha nem sempre é feita de maneira natural, e notamos que a análise Bayesiana conjugada pode se mostrar bastante complexa. Para evitarmos os problemas surgidos com a análise Bayesiana conjugada, sugerimos a utilização de métodos amostrais, através de uma técnica bastante original. Com o algoritmo Sampling-Importance-Resampling (SIR) simulamos as distribuições preditivas das medidas de desempenho. Com o histograma de Berger determinamos a informação a priori de p (intensidade de tráfego), que pode ser feito via MINITAB. Para a utilização deste procedimento necessitamos somente da informação a priori da intensidade de tráfego. |