Medidas de centralidade em redes complexas: correlações, efetividade e caracterização de sistemas

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Ronqui, José Ricardo Furlan
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-24042014-114142/
Resumo: Centralidades são medidas desenvolvidas para determinar a importância dos nós e ligações, utilizando as características estruturais das redes para esta finalidade. As medidas de centralidade são, portanto, essenciais no estudo de redes complexas pois os sistemas representados por elas geralmente são formados por muitos elementos, e com isso, torna-se inviável estudar individualmente cada um deles; dessa forma é necessário identificar os nós e ligações que são mais relevantes em cada situação. Todavia, com o surgimento de ideias diferentes de como esses elementos podem ser importantes, diversas medidas foram propostas com o intuito de evidenciar elementos que passam despercebidos pelas demais. Neste trabalho utilizamos a correlação de Pearson para avaliar o quão semelhantes são as classificações fornecidas pelas centralidades para redes representando sistemas reais e modelos teóricos. Para avaliar a efetividade das medidas e como elas afetam cada sistema, atacamos as redes usando as centralidades como indicadores para a ordem de remoção dos nós e ligações. Procurando caracterizar as redes usando suas diferenças estruturais, realizamos uma análise de componentes principais empregando as correlações entre os pares de centralidade como características de cada sistema. Nossos resultados mostraram que na maioria dos casos medidas distintas estão correlacionadas, o que indica que em geral os mesmos elementos são evidenciados pelas diferentes centralidades; também observamos que as correlações são mais fortes nos modelos do que nos sistemas reais. Os ataques mostraram que medidas fortemente correlacionadas podem influenciar as redes de maneiras distintas, evidenciando a importância do conjunto de elementos selecionados por cada medida. Nosso último resultado demonstra que as correlações entre os pares de centralidades podem ser utilizados tanto para a diferenciação e caracterização de redes quanto na avaliação de modelos que representem melhor a estrutura de um sistema específico.