Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Benicio, Marily Aparecida
 |
Orientador(a): |
Pinto, Sandro Ely de Souza
 |
Banca de defesa: |
Brinatti, André Maurício
,
Manchein, Cesar
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
UNIVERSIDADE ESTADUAL DE PONTA GROSSA
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciências
|
Departamento: |
Fisica
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.uepg.br/jspui/handle/prefix/906
|
Resumo: |
Studies of complex networks help us to understand and model many real world situations. The world abounds in networks that can be found in many real contexts. The term network refers to relations between two sets and can be represented by means of graph theory. The classification of complex networks is given according to the models created to represent them, such as Random networks, networks of Small World, No Scaling networks and hierarchical networks. From the perspective of complex networks, a study which make significant contributions analysis is the phenomenon of diffusion of information in networks, which can be understood through the random walk process, which is characterized by a stochastic used as a mechanism transportation and research in complex networks. A random walk in complex networks can be used to check the behavior of each network model front dissipation. Each network model presents a different behavior with respect to the number of random walkers that pass through the network node over time. The number of walkers will depend on the structure of the networks generated by each model and measures of centrality of each node. Measures of centrality of the vertices of the network are useful for comparing the efficienc of the nodes with respect to receiving and sending information being indicative of the rapidity with which this transport happens. The objective of this work is to study the process of random walk and use it to analyze the efficiency of Centrality measures, inferring the number of random walkers who pass by us in complex networks. Measures of centrality are analyzed centralities Degree, Centrality Intermediation by Minor Roads, Centralization of Random Walk. To compare the efficiency of these measures of centrality in the different network models, numerical simulations were performed. With these, it was noticed that the behavior of the diffusion of walkers varies for each network model. Random network for the flow of walkers from the evenly is not possible to highlight some vertex of utmost importance within the network. It can be observed that the measure of centrality of Random Walk is the one that showed greater efficiency by pointing a greater flow of walkers to the vertices that had a higher value for this measure. |