Predição de Medidas em Redes Complexas com Aprendizagem de Máquina

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Negri, Juliano Decico
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-09082024-135531/
Resumo: O estudo das redes complexas evoluiu com a criação de diversas métricas para análises das características das redes e dos respectivos vértices. Entretanto, com o maior volume de dados disponíveis, limites à escalabilidade dos algoritmos atuais para cálculo de medidas em redes se tornaram um gargalo para o estudo das redes. Por esse motivo, a literatura evolui com a criação de aproximações para esses algoritmos. Recentemente, conforme as técnicas de aprendizagem de máquina se tornaram o estado da arte em diversas aplicações referentes às redes complexas, o seu uso para aproximações de medidas foi testado na literatura, mas ainda é limitado. O objetivo deste projeto é avaliar a aplicação de modelos de aprendizagem de máquina para aproximação de medidas de centralidade em termos de qualidade de predição e de generalização da aplicação dos modelos, levando em consideração conjunto de dados de redes com diferentes distribuições.