Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Duft, Daniel Garbellini |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-13102022-110617/
|
Resumo: |
A agricultura digital é uma abordagem multidisciplinar que diz respeito ao uso de informações digitais detalhadas para orientar a tomada de decisão ao longo da cadeia agrícola. Seu uso é cada vez mais necessário e deve trazer muitos benefícios para a segurança alimentar e energética nos próximos anos. O grande ponto é a aquisição de dados de maneira contínua para gerar informações e guiar processos. Como a agricultura, principalmente no Brasil, é feita em grandes escalas de área e por conta disso, a aquisição de dados com o uso de sensores na propriedade é dificultada, o sensoriamento remoto aparece como uma ferramenta importante para a obtenção de dados e validação de operações. O sensoriamento remoto é utilizado de forma contínua desde a década de 80, porém tem ganhado mais força com o aparecimento da computação de alta performance e com o barateamento dela. Embora em algumas culturas estejam bastante desenvolvidas no uso de sensoriamento remoto para geração de informações, a cana-de-açúcar ainda possui poucos trabalhos e em escala local. A cana-de-açúcar é a principal cultura para a produção de açúcar e etanol no Brasil. O país é responsável por mais da metade da produção mundial dessa planta e hoje ela é cultivada no Nordeste e na região Centro-Sul. Devido à extensa área de cultivo, existem diversas condições edafoclimáticas em que a cultura da cana-de-açúcar se desenvolve e desta forma, separar essas regiões é extremamente importante para poder aplicar modelos em escala homogênea. Além disso, fazer uma separação morfológica dos canaviais é importante para não gerar modelos sem essa variável e consequentemente trazer incertezas ao processo. No intuito de criar regiões homogêneas foi feito um trabalho de zoneamento e regionalização levando-se em conta as variáveis agrometeorológicas, solo e produtividade histórica da cana planta. Criou-se três regiões de alto, médio e baixo potencial de produção de cana para o Centro-Sul do país. Em seguida, avaliando-se o comportamento histórico de índices de vegetação da área de estudo, fez-se uma regionalização levando em conta o potencial de produção e o comportamento do índice de vegetação. Foram propostas dezessete regiões com comportamento homogêneo para aplicações de modelos baseados em sensoriamento remoto. Outra abordagem foi identificar características morfológicas da cana-de-açúcar que podem levar a falhas em modelagens de áreas contínuas. Para isso, foi utilizado o modelo Random Forest e imagens do satélite Sentinel-2 para criar um modelo que identifica diferentes cultivares. O modelo teve uma precisão global de 86% e índice kappa de 81%. Quando aplicado para 4 cultivares em uma região maior, apresentou a precisão variando de 91% a 96%. Desta forma, foi possível concluir que modelos se adaptam com a mesma precisão que o conjunto de treino, se a região de aplicação é homogênea em relação a solo, clima e manejo. Além disso, o trabalho é base para futuras aplicações em agricultura digital para a cultura da cana-de-açúcar que precisem gerar modelos para a região Centro-Sul. |