Potencial agrícola no Cerrado utilizando ferramentas de aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Romeiro, Mariane Cristina do Amaral
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/91/91131/tde-12072022-143637/
Resumo: O planejamento territorial é uma ferramenta de suma importância para o desenvolvimento sustentável do setor agrícola brasileiro, ainda mais em biomas com fronteiras agrícolas em pleno crescimento, como o Cerrado. O zoneamento agrícola é um dos principais instrumentos do planejamento territorial, que em sua maioria é realizado a partir de análises multicritérios e depende de interpretações de analistas. Ao buscar por diferentes alternativas para este tipo de análise, veio o termo Inteligência Artificial (IA), ramo da ciência da computação, que vem sendo usado de forma abrangente não só no meio acadêmico, mas em funcionalidades usadas no dia a dia, como streaming de filmes e séries, carros inteligentes, reconhecimento facial, comportamento de consumo, entre muitos outros. Diante de tamanha versatilidade deste ramo, foi proposto para este estudo utilizar ferramentas de aprendizado de máquina, que é um dos campos da IA, para desenvolver modelos preditivos para classificação do potencial agrícola no Cerrado brasileiro. Foram desenvolvidos quatro modelos, utilizando o algoritmo Random Forest, entre eles o potencial de expansão da soja, potencial de intensificação da pecuária, potencial de expansão da floresta plantada e um modelo final que reúne as três cadeias agropecuárias. Como variáveis de entrada foram usados dados climáticos, edáficos, de infraestrutura e socioeconômicos, já como classe para treinamento do modelo utilizou-se dados de um estudo elaborado pela organização WWF-Brasil em parceria com outras instituições. A performance dos modelos foi avaliada a partir da matriz de confusão, e a melhor acurácia foi a do modelo de floresta plantada com 98%, seguido do modelo de soja e pecuária, com 86% e 79%, respectivamente. O modelo final apresentou uma acurácia geral de 80%.