[pt] CLASSIFICAÇÃO NÃO-SUPERVISIONADA DE IMAGENS DE SENSORIAMENTO REMOTO

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: ALEXANDRE HENRIQUE LEAL NETO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8497&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8497&idi=2
http://doi.org/10.17771/PUCRio.acad.8497
Resumo: [pt] A classificação e segmentação não-supervisionadas de imagens de sensoriamento remoto são examinadas neste trabalho. A classificação é realizada tomando-se como base o critério de Bayes, que busca minimizar o valor esperado do erro de classificação. Os algoritmos desenvolvidos foram propostos pressupondo-se que a estrutura das classes presentes na imagem podem ser bem modeladas por vetores aleatórios guassianos. Os classificadores convencionais, que só levam em conta a informação dos pixels de forma isolada, forma tratados sob a ótica da quantização vetorial. Em particular, foi proposto um algoritmo de classificação com base na quantização vetorial com restrição de entropia. O desempenho das técnicas de classificação é analisado obsevando-se a discrepância entre classificações, comparando-se as imagens classificadas com imagens referencia e classificando-se imagens sintéticas. A taxa de acerto, entre 80% e 95%. Este bom desempenho dos classificadores é limitado pelo fato de, em suas estruturas, levarem em conta a informação dos pixels de forma isolada. Buscamos, através da classificação de segmentos, incorporar informações de contexto em nossos classificadores. A classificação de segmentos levou a taxas de erros inferiores àquelas alcançadas por classificadores baseados em pixels isolados. Um algoritmo de segmentação, que incorpora ao modelo de classificação por pixels a influencia de sua vizinhança através de uma abordagem markoviana, é apresentado.