Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Carlos Junior, Luis Fernando Martins |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04082015-104017/
|
Resumo: |
O Reconhecimento de faces consiste em, a partir de uma imagem, identificar ou verificar um ou mais indivíduos através de um banco de dados de faces. O reconhecimento de faces é uma tarefa de grande interesse, principalmente pelo grande número de possíveis aplicações. Dessa forma, existem diversos métodos para lidar com o problema. No entanto, apesar da maioria dos métodos conseguirem bons resultados em ambientes controlados, quando há variações de iluminação, pose ou expressão facial, esse desempenho é reduzido. Buscando lidar com as dificuldades existentes, este trabalho propõe um método para o reconhecimento de faces utilizando os conjuntos-K. Os conjuntos-K são modelos conexionistas baseados em populações de neurônios, concebidos através de estudos e análises do sistema olfativo animal. Estes modelos apresentam estrutura e comportamento biologicamente mais plausíveis que os modelos tradicionais de redes neurais. Os conjuntos-K vêm sendo usados em diversas tarefas de aprendizado de máquina, apresentando bons resultados principalmente na resolução de problemas complexos ou com ruídos. Devido ao grande potencial dos conjuntos-K para reconhecimento de padrões em ambientes complexos e ruidosos, é levantada a hipótese de que um método baseado nos conjuntos-K alcance um melhor desempenho que os métodos existentes na literatura. O método proposto foi avaliado utilizando dois bancos de dados, AT&T e Yale B, o primeiro com pequenas variações em relação a pose e expressão facial e o segundo com grandes variações de iluminação fornecendo um cenário mais complexo. Os resultados mostraram que o método proposto consegue um desempenho equivalente ou um pouco inferior que os outros métodos avaliados para o primeiro banco de dados. Porém, para o segundo banco de dados, que fornece o cenário mais complexo, o método proposto supera os demais métodos. |