Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Zeni, Luis Felipe de Araujo |
Orientador(a): |
Scharcanski, Jacob |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/101659
|
Resumo: |
Reconhecer a identidade de seres humanos a partir de imagens digitais gravadas de suas faces é uma etapa importante para uma variedade de aplicações que incluem segurança de acesso, iteração humano computador, entretenimento digital, entre outras. Neste trabalho é proposto um novo método automático para reconhecimento facial que utiliza simultaneamente a informação 2D e 3D de uma câmera RGB-D(Kinect). O método proposto utiliza a informação de cor da imagem 2D para localizar faces na cena, uma vez que uma face é localizada ela é devidamente recortada e normalizada para um padrão de tamanho e cor. Posteriormente com a informação de profundidade o método estima a pose da cabeça em relação com à câmera. Com faces recortadas e suas respectivas informações de pose, o método proposto treina um modelo de faces robusto à variação de poses e expressões propondo uma nova técnica automática que separa diferentes poses em diferentes modelos de faces. Com o modelo treinado o método é capaz de identificar se as pessoas utilizadas para aprender o modelo estão ou não presentes em novas imagens adquiridas, as quais o modelo não teve acesso na etapa de treinamento. Os experimentos realizados demonstram que o método proposto melhora consideravelmente o resultado de classificação em imagens reais com variação de pose e expressão. |