[en] IMAGE QUALITY METRICS FOR FACE RECOGNITION
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=22825&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=22825&idi=2 http://doi.org/10.17771/PUCRio.acad.22825 |
Resumo: | [pt] O Reconhecimento Facial é o processo de identificação de uma pessoa a partir da imagem de sua face. Na forma mais usual, o processo de identificação consiste em extrair informações dessa imagem e compará-las com informações relativas a outras imagens armazenadas numa base de dados e por fim indicar na saída a imagem da base mais similar à imagem de entrada. O desempenho desse processo está diretamente ligado à qualidade das imagens, tanto das que estão armazenadas na base de dados, quanto da imagem do indivíduo cuja identidade está sendo determinada. Por isso, convém que a qualidade das imagens faciais seja avaliada antes que estas sejam submetidas ao procedimento de reconhecimento. A maioria dos métodos apresentados até o momento na literatura baseia-se em um conjunto de critérios, cada um voltado a um atributo isolado da imagem. A qualidade da imagem é considerada adequada se aprovada por todos os critérios individualmente. Desconsidera-se, portanto, o efeito cumulativo de diversos fatores que afetam a qualidade das imagens e, por conseguinte, o desempenho do reconhecimento facial. Essa monografia propõe uma metodologia para o projeto de métricas de qualidade de imagens faciais que expressem num único índice o efeito combinado de diversos fatores que afetam o reconhecimento. Tal índice é dado por uma função de um conjunto de atributos extraídos diretamente da imagem. O presente estudo analisa experimentalmente uma função linear e uma rede neural do tipo back-propagation como alternativas para a estimativa de qualidade a partir dos atributos. Experimentos conduzidos sobre a base de dados IMM para o algoritmo de reconhecimento baseado em padrões binários locais comprovam a o bom desempenho da metodologia. |