[en] IMAGE QUALITY METRICS FOR FACE RECOGNITION

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: JOSÉ LUIZ BUONOMO DE PINHO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=22825&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=22825&idi=2
http://doi.org/10.17771/PUCRio.acad.22825
Resumo: [pt] O Reconhecimento Facial é o processo de identificação de uma pessoa a partir da imagem de sua face. Na forma mais usual, o processo de identificação consiste em extrair informações dessa imagem e compará-las com informações relativas a outras imagens armazenadas numa base de dados e por fim indicar na saída a imagem da base mais similar à imagem de entrada. O desempenho desse processo está diretamente ligado à qualidade das imagens, tanto das que estão armazenadas na base de dados, quanto da imagem do indivíduo cuja identidade está sendo determinada. Por isso, convém que a qualidade das imagens faciais seja avaliada antes que estas sejam submetidas ao procedimento de reconhecimento. A maioria dos métodos apresentados até o momento na literatura baseia-se em um conjunto de critérios, cada um voltado a um atributo isolado da imagem. A qualidade da imagem é considerada adequada se aprovada por todos os critérios individualmente. Desconsidera-se, portanto, o efeito cumulativo de diversos fatores que afetam a qualidade das imagens e, por conseguinte, o desempenho do reconhecimento facial. Essa monografia propõe uma metodologia para o projeto de métricas de qualidade de imagens faciais que expressem num único índice o efeito combinado de diversos fatores que afetam o reconhecimento. Tal índice é dado por uma função de um conjunto de atributos extraídos diretamente da imagem. O presente estudo analisa experimentalmente uma função linear e uma rede neural do tipo back-propagation como alternativas para a estimativa de qualidade a partir dos atributos. Experimentos conduzidos sobre a base de dados IMM para o algoritmo de reconhecimento baseado em padrões binários locais comprovam a o bom desempenho da metodologia.