Detalhes bibliográficos
Ano de defesa: |
1983 |
Autor(a) principal: |
Chiarini, Celso |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-165647/
|
Resumo: |
O problema é de natureza teórica, no campo do Cálculo de Probabilidades, mas motivado por importantes aplicações práticas. O desenvolvimento do trabalho considera o quociente (Descrito na tese), sendo ρ o coeficiente de correlação entre X1 e X2. Onde se mostra conveniente, são utilizados os coeficientes de variação de (Descrito na tese) não nulos. Estuda-se o caso geral da distribuição de probabilidades do quociente de variáveis aleatórias normais, correlacionadas ou não. Determina-se sua função de densidade de probabilidade, diretamente, a partir da função de densidade de probabilidade do quociente de variáveis aleatórias absolutamente contínuas. Verificam-se propriedades que simplificam a obtenção e apresentação de tabela, concluindo-se que ; suficiente a obtenção de tabela para variáveis independentes, de variâncias unitárias e coeficientes de variação (ou médias) positivos. Demonstra-se que, se a mediana (ou média) de X2 é não nula, a mediana do quociente de variáveis aleatórias normais independentes i o quociente das medianas. Apresentam-se tabela e gráficos julgados de interesse. Aplica-se a distribuição de probabilidades do quociente de variáveis aleatórias normais no teste da hipótese (Descrito na tese), em amostras independentes ou não. Apresentam-se exemplos de aplicação, fazendo-se sua análise a luz da metodologia proposta. |