A distribuição de probabilidades do quociente de variáveis aleatórias normais: determinação, propriedades, tabela e algumas aplicações

Detalhes bibliográficos
Ano de defesa: 1983
Autor(a) principal: Chiarini, Celso
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-165647/
Resumo: O problema é de natureza teórica, no campo do Cálculo de Probabilidades, mas motivado por importantes aplicações práticas. O desenvolvimento do trabalho considera o quociente (Descrito na tese), sendo ρ o coeficiente de correlação entre X1 e X2. Onde se mostra conveniente, são utilizados os coeficientes de variação de (Descrito na tese) não nulos. Estuda-se o caso geral da distribuição de probabilidades do quociente de variáveis aleatórias normais, correlacionadas ou não. Determina-se sua função de densidade de probabilidade, diretamente, a partir da função de densidade de probabilidade do quociente de variáveis aleatórias absolutamente contínuas. Verificam-se propriedades que simplificam a obtenção e apresentação de tabela, concluindo-se que ; suficiente a obtenção de tabela para variáveis independentes, de variâncias unitárias e coeficientes de variação (ou médias) positivos. Demonstra-se que, se a mediana (ou média) de X2 é não nula, a mediana do quociente de variáveis aleatórias normais independentes i o quociente das medianas. Apresentam-se tabela e gráficos julgados de interesse. Aplica-se a distribuição de probabilidades do quociente de variáveis aleatórias normais no teste da hipótese (Descrito na tese), em amostras independentes ou não. Apresentam-se exemplos de aplicação, fazendo-se sua análise a luz da metodologia proposta.