Detalhes bibliográficos
Ano de defesa: |
1998 |
Autor(a) principal: |
Oliveira, José Roberto Temponi de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15032018-141438/
|
Resumo: |
Neste trabalho comparamos modelos de séries temporais auto-regresivos de ordem p AR(p), ajustados pela abordagem clássica e Bayesiana. Na análise clássica a identificação do modelo é feita através da função de autocorrelação (FAC) e função de autocorrelação parcial (FACP), a escolha do melhor modelo para um conjunto de dados é feita usando-se o Critério de Informação de Alcaike (MC) e o Critério de Informação Bayesiano (MC). Na análise Bayesiana consideramos três alternativas de densidades a priori para os parâmetros, aqui a escolha do melhor modelo é feita pela densidade preditiva. Primeiramente consideramos a priori não informativa de Jeffireys, onde a densidade a posteriori marginal, para os parâmetros do modelo, pode ser calculada analiticamente e mostra-se que o valor esperado dessa posteriori coincide com o estimador de máxima verossimilhança. No segundo caso, adotamos uma função densidade a priori conjugada normal-gama. Aqui, a densidade a posteriori também pode ser calculada analiticameMe, resultando em uma densidade t-Student p-dimensional, no entanto em muitas situações reais adotar priori conjugada é pouco realista. Para contornar esse problema, no terceiro caso adotamos uma densidade a priori informativa t-Student, pdimensional, para os parâmetros e uma densidade a priori gama para o inverso da variância dos resíduos. Isto resulta em uma densidade a posteriori não padronizada. Neste caso a análise a posteriori só pode ser feita usando-se algoritmos de simulação em cadeia de Markov, MCMC. |