Uso de MCMC na abordagem Bayesiana de modelos ARCH e GARCH

Detalhes bibliográficos
Ano de defesa: 2001
Autor(a) principal: Ferreira, Valeria Aparecida Martins
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012018-112732/
Resumo: Neste trabalho é descrito uma seqüência de procedimentos para estimar parâmetros e selecionar ordem de modelos Auto-Regressivos com heterocedasticidade, ARCH(p), e Auto- Regressivos generalizados, GARCH(p,q). As estimativas são obtidas utilizando duas técnicas: a inferência clássica e a bayesiana em conjunto com simulação de Monte Carlo em Cadeia de Markov (MCMC). Na análise bayesiana utilizamos densidades a priori normais para os parâmetros do modelo. Os métodos desenvolvidos foram aplicados em duas séries geradas e em três séries do mercado financeiro: Índice Bovespa, Telebrás e Cotação em Dólar Americano da moeda Iene Japonês. Em geral, as estimativas de máxima verossimilhança e bayesiana apresentaram resultados próximos. Porém, em algumas séries, o intervalo com 95% de confiança para certos parâmetros do modelo apresentou valores negativos, o que viola as restrições impostas aos parâmetros dos modelos ARCH(p), destacando a vantagem da abordagem bayesiana.