Estimadores de parâmetro consistentes para modelos de grafo aleatório e estudo sobre a relação entre a rede modo padrão do cérebro e o volume do corpo caloso

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Santos, Suzana de Siqueira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-16032020-111145/
Resumo: Grafos possibilitam estudar o funcionamento de diversos sistemas, como redes biológicas e sociais. Nesse contexto, surge o problema (i) de selecionar um modelo de grafo aleatório e um conjunto de parâmetros que melhor se ajustem a uma rede do mundo real, buscando interpretar e predizer seu comportamento. Dada uma sequência de redes e valores observados, temos adicionalmente o problema (ii) de correlacioná-los. Para (i), Takahashi e colegas propuseram um método baseado nas densidades dos espectrais (distribuição dos autovalores da matriz de adjacência) cuja principal vantagem é a generalidade. Nós propusemos adaptações, baseadas na norma l1 entre densidades espectrais e entre distribuições acumuladas, que nos levaram à derivação de resultados teóricos sobre a consistência do estimador de parâmetro. Finalmente, o problema (ii) é abordado no Transtorno do Espectro Autista (TEA), cujas sub-classificações em Asperger e autismo têm bases neurais pouco conhecidas. Como há evidências de alterações da rede modo padrão em TEA, comparamos a relação dessa rede com a maior estrutura de matéria branca do cérebro (corpo caloso) entre Asperger e autismo. Nossos resultados sugerem que essa relação é maior em Asperger do que em autismo na região anterior do corpo caloso e que o maior autovalor do grafo é capaz de capturar a relação com o parâmetro estimado.