Diagnóstico no modelo de regressão logística ordinal

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Moura, Marina Calais de Freitas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-16072019-170627/
Resumo: Os modelos de regressão logística ordinais são usados para descrever a relação entre uma variável resposta categórica ordinal e uma ou mais variáveis explanatórias. Uma vez ajustado o modelo de regressão, se faz necessário verificar a qualidade do ajuste do modelo. As estatísticas qui-quadrado de Pearson e da razão de verossimilhanças não são adequadas para acessar a qualidade do ajuste do modelo de regressão logística ordinal quando variáveis contínuas estão presentes no modelo. Para este caso, foram propostos os testes de Lipsitz, a versão ordinal do teste de Hosmer-Lemeshow e os testes qui-quadrado e razão de verossimilhanças de Pulkistenis-Robinson. Nesta dissertação é feita uma revisão das técnicas de diagnóstico disponíveis para os Modelos logito cumulativo, Modelos logito categorias adjacentes e Modelos logito razão contínua, bem como uma aplicação a fim de investigar a relação entre a perda auditiva, o equilíbrio e aspectos emocionais nos idosos.