Modelos de regressão para variáveis categóricas ordinais com aplicações ao problema de classificação

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Okura, Roberta Irie Sumi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-13052008-075032/
Resumo: Neste trabalho, apresentamos algumas metodologias para analisar dados que possuem variável resposta categórica ordinal. Descrevemos os principais Modelos de Regressão conhecidos atualmente que consideram a ordenação das categorias de resposta, entre eles: Modelos Cumulativos e Modelos Sequenciais. Discutimos também o problema de discriminação e classificação de elementos em grupos ordinais, comentando sobre os preditores mais comuns para dados desse tipo. Apresentamos ainda a técnica de Análise Discriminante Ótima e sua versão aprimorada, baseada na utilização de métodos bootstrap. Por fim, aplicamos algumas das técnicas descritas a dados reais da área financeira, com o intuito de classificar possíveis clientes, no momento da aquisição de um cartão de crédito, como futuros bons, médios ou maus pagadores. Para essa aplicação, discutimos as vantagens e desvantagens dos modelos utilizados em termos de qualidade da classificação.