Testes estatísticos em regressão logística sob a condição de separabilidade

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Souza, André Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
BR
Estatística Aplicada e Biometria
Mestrado em Estatística Aplicada e Biometria
UFV
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://locus.ufv.br/handle/123456789/4032
Resumo: A regressão logística é o método estatístico usual de análise utilizado quando o objetivo é verificar a relação entre uma variável resposta dicotômica e variáveis explicativas de interesse. Usualmente, os parâmetros deste modelo são estimados pelo método de máxima verossimilhança genuína, e testes sobre estes parâmetros são construídos considerando as distribuições aproximadas dos estimadores. Isto significa que amostras grandes tornam-se necessárias para obter resultados mais confiáveis. Em estudos envolvendo dados binários, é frequente a presença de uma variável resposta cujo sucesso é pouco provável, ou seja, tem-se um evento raro, o que pode gerar uma amostra de dados esparsos. Nestes casos, diz-se que os dados podem estar sob a condição de separabilidade, e esta situação está frequentemente associada à presença de uma covariável categórica, podendo os estimadores de máxima verossimilhança, para pelo menos um parâmetro, não existir. Na situação de separabilidade recomenda-se utilizar o método de máxima verossimilhança penalizada proposto por Firth (1993). O objetivo principal deste trabalho foi verificar por meio de simulação Monte Carlo os poderes dos testes da razão de verossimilhanças (TRV) e de Wald obtido via máxima verossimilhança penalizada na condição de separabilidade. A metodologia apresentada neste trabalho foi aplicada a dois conjuntos de dados reais. A simulação Monte Carlo com uma variável explicativa no modelo possibilitou obter indicativos que o TRV tem maior poder que o teste de Wald.