Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Rizziolli, Elíris Cristina |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27112014-164227/
|
Resumo: |
Nesse trabalho estuda-se o seguinte problema: \"Dada uma família a 1-parâmetro de germes de aplicações F : (Cn x C, (0,0)) > Cp, 0), encontrar invariantes analíticos cuja constância na família implica que esta é Whitney equisingular\". Gaffney descreve este problema para a classe de germes de aplicações finitamente determinados de tipo estável discreto. Para obter a Whitney equisingularidade de tal família, os invariantes necessários são os invariantes 0-estáveis e as multiplicidades polares das variedades polares associadas a todos os tipos estáveis. O número de invariantes depende das dimensões (n, p) e esse número pode ser muito grande s e n e p são grandes. Então aparece uma questão natural: \"Fixado um par de dimensões (n,p), qual é o número mínimo de invariantes no teorema de Gaffney que são necessários para garantir a Whitney equisingularidade?\" Aqui trata-se dos germes de aplicações em O(n,3) n ≥ 4. Para reduzir o número de invariantes mostra-se relações envolvendo as multiplicidades polares. Também considera-se o caso especial de quase homogêneos. Obtém-se fórmulas para calcular os invariantes polares e #A3 em termos dos pesos e graus do germe quase homogêneo. |