Invariantes de germes do plano no plano

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Silveira, Mariana Rodrigues da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10122014-104150/
Resumo: O objetivo do trabalho é estudar os invariantes de germes de aplicações do plano no plano, que são: o número de cúspides (c(f)) e o número de dobras (d(f)) que aparecem no discriminante de uma perturbação estável do germe f . Além disso, mostramos que c(f) e d(f) são invariantes topológicos. No caso particular em que f é um germe de corank 1, encontramos fórmulas que simplificam o cálculo de c(f) e d(f) .