Alguns aspectos de tratamento de dependências de contexto em linguagem natural empregando tecnologia adaptativa.

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Moraes, Miryam de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-28052007-174355/
Resumo: O tratamento de Linguagens Naturais requer o emprego de formalismos mais complexos que aqueles normalmente empregados para Linguagens Livre de Contexto. A maioria de tais formalismos são difíceis de serem utilizados, não práticos e sobretudo, associados a um desempenho de elevado custo. Autômatos de pilha estruturados são excelentes para se representar linguagens regulares e aspectos livre de contexto encontrados em Linguagem Natural, uma vez que é possível decompo-los em uma camada reguar (implementada com máquina de estados finitos) e uma livre de contexto (representada por uma pilha). Tais dispositivos aceitam linguagens determinísticas e livre de contexto em tempo linear. Dessa forma, trata-se de um dispositivo adequado para ser empregado como mecanismo subjacente para os autômatos adaptativos, que permitem o tratamento - sem perda de simplicidade e eficiência - de linguagens mais complexas que aquelas livres de contexo Nesta tese, dependências de contexto são tratadas com tecnologia adaptativa. Este trabalho mostra como uma regra de Linguagem Natural descrita com uma metalinguagem pode ser convertida em um autômato de pilha adaptativo. Foi possível verificar que problemas complexos em análise de Linguagem Natural, tais como os não-determinismos e ambigüidades presentes em situações de concordância, subcategorização, coordenação podem ser resolvidos com eficiência. De fato, todos os mecanismos adaptativos para solucionar estes problemas apresentam desempenho O(n). Uma arquitetura para processamento em Linguagem Natural é apresentada.