Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Requena, Guaraci de Lima |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-11102018-152033/
|
Resumo: |
Este trabalho generaliza a partição da distribuição de Bernoulli multivariada em distribuições de Bernoulli e como esta partição leva a um modelo de regressão e a um classificador para dados politômicos. Como ponto de partida, desejamos explicitar a função de ligação para os modelos de regressão multinomial e escrevê-la a partir de funções de distribuição, como feito no caso binomial, a fim de flexibilizá-la para além da logito usual. Para isso, estudamos as fatorações da Bernoulli multivariada em Bernoullis, bem como a multinomial em binomiais, a fim de explicitar como as funções de distribuição podem desempenhar um papel na ligação entre o espaço das covariáveis e o vetor de probabilidades. Basu & Pereira (1982) exploram tais fatorações em um problema de não resposta e Pereira & Stern (2008) as generalizam para uma classe de fatorações. Este trabalho propõe uma simplificação tanto da regressão multinomial - agregando a flexibilidade do caso binomial -, quanto da classificação politômica, no sentido de decompor o problema politômico em dicotômicos através da generalização da classe de fatorações. Um problema computacional surge pois tal classe pode ter um número muito grande de elementos distintos de acordo com o número de categorias e, assim, duas propostas são feitas para buscar uma que minimiza os riscos de classificação binomial envolvidos, passo-a-passo. A motivação para este trabalho é apresentada a fim de se estudar as performances de tais modelos de regressão e classificadores. Partimos de um problema da área médica, mais especificamente em transtorno obsessivo-compulsivo, em que desejamos classificar um indivíduo a fim de obter um fenótipo mais puro de tal transtorno e de modelá-lo a fim de buscar as covariáveis que estão relacionadas com tal fenótipo, a partir de um conjunto de dados reais. |