Inferência para o modelo Bernoulli na presença de adversários

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Takara, Victor Junji
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-12052021-114559/
Resumo: A teoria da decisão com adversários se originou na tentativa de solucionar problemas na área de aprendizado de máquina. Nessa teoria, supõe-se a existência de adversários que têm como intuito a perturbação dos dados (ou do mecanismo gerador dos mesmos). Uma vez que ela é baseada em inferência bayesiana, a todas as incertezas são atreladas medidas de probabilidade, inclusive às possíveis ações realizadas por adversários. No entanto, pela natureza aplicada da teoria, ela foi criada e estudada com enfoque na teoria da decisão, sem muita preocupação com formalismos na área de estatística. Assim, o objetivo desse trabalho foi estudar elementos inferenciais importantes, como a estimação pontual e o teste de hipóteses para o modelo Bernoulli na presença de adversários. Ilustramos como essas alterações impactam a estimativa pontual e o teste de hipótese bayesiano, além da própria distribuição dos dados observáveis e de componentes importantes, como o comportamento do risco bayesiano e regiões críticas.