Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Gonçalves, Victor Henrique |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-01022018-164230/
|
Resumo: |
Esta dissertação descreve a aplicação do KIII, um modelo de rede neural biologicamente mais plausível, para a previsão de séries temporais econômicas. Os conjuntos K são modelos conexionistas baseados em populações de neurônios e foram usados em muitas aplicações de aprendizado de máquina, incluindo previsões de séries temporais. Nesta dissertação, este método foi aplicado ao IPCA, um índice de preços ao consumidor brasileiro pesquisado pelo IBGE em 13 regiões metropolitanas. Os valores abrangem o período de agosto de 1994 a junho de 2017. Os experimentos foram realizados utilizando quatro modelos não-paramétricos (KIII, kNN contínuo, RNAs clássicas e SVM) e seis métodos paramétricos: ARIMA, SARIMA, Médias Móveis, SES, Holt, Holt-Winters Aditivo e Holt-Winters Multiplicativo. A médida estatística RMSE foi utilizada para comparar o desempenho dos métodos. Os conjuntos KIII de Freeman funcionaram bem como um filtro, melhorando o desempenho do método, mas não foram um bom método de previsão, sendo superado, na maior parte dos experimentos, por outros métodos de previsão de séries temporais. Esta dissertação contribui com o uso de modelos não paramétricos para prever a inflação em um país em desenvolvimento. |