Superfícies de tipo espaço com vetor curvatura média nulo em `L POT.3¦ e `L POT.4¦

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: Lopes, Célia Mendes Carvalho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-131029/
Resumo: Neste trabalho é desenvolvida a teoria de superfícies 2-dimensionais de tipo espaço do espaço de Minkowski 4-dimensional `L POT.4¦. Primeiramente, associamos, de modo natural, duas normais unitárias, uma espacial e outra temporal, globalmente definidas, em relação às quais são estudados os objetos geométricos da superfície. Além disso, explorando a estrutura holomorfa induzida pela pseudo-métrica do ¦L POT.4¦ sobre a superfície, introduz-se a representação de Weierstrass para superfícies de tipo espaço `L POT. 4¦ tendo vetor curvatura média identicamente nulo. Esta representação é, então, usada para a construção de exemplos e para mostrar que as superfícies de tipo espaço do `L POT.3¦ tendo vetor curvatura média identicamente nulo (isto é, as superfícies máximas do `L POT.3¦) são localmente essencialmente determinadas pelas superfícies mínimas do `R POT. 3¦. Para finalizar, são estudadas variações normais locais de uma superfície de tipo espaço do `L POT.4¦ tendo vetor curvatura média nulo. Por meio da segunda variação da área mostra-se que para variações normais locais, se o vetor variação for de tipo tempo, a área de superfície deformada é menor do que a área da superfície original. Mas, se o vetor variação for de tipo espaço, a área da superfície deformada é maior do que a da superfície original