Detalhes bibliográficos
Ano de defesa: |
2002 |
Autor(a) principal: |
Lopes, Célia Mendes Carvalho |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-131029/
|
Resumo: |
Neste trabalho é desenvolvida a teoria de superfícies 2-dimensionais de tipo espaço do espaço de Minkowski 4-dimensional `L POT.4¦. Primeiramente, associamos, de modo natural, duas normais unitárias, uma espacial e outra temporal, globalmente definidas, em relação às quais são estudados os objetos geométricos da superfície. Além disso, explorando a estrutura holomorfa induzida pela pseudo-métrica do ¦L POT.4¦ sobre a superfície, introduz-se a representação de Weierstrass para superfícies de tipo espaço `L POT. 4¦ tendo vetor curvatura média identicamente nulo. Esta representação é, então, usada para a construção de exemplos e para mostrar que as superfícies de tipo espaço do `L POT.3¦ tendo vetor curvatura média identicamente nulo (isto é, as superfícies máximas do `L POT.3¦) são localmente essencialmente determinadas pelas superfícies mínimas do `R POT. 3¦. Para finalizar, são estudadas variações normais locais de uma superfície de tipo espaço do `L POT.4¦ tendo vetor curvatura média nulo. Por meio da segunda variação da área mostra-se que para variações normais locais, se o vetor variação for de tipo tempo, a área de superfície deformada é menor do que a área da superfície original. Mas, se o vetor variação for de tipo espaço, a área da superfície deformada é maior do que a da superfície original |