Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Vilhena, José Antonio Moraes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-140153/
|
Resumo: |
Em [22], D. Hoffman e R. Osserman provaram, entre outros resultados, que uma superfície mínima em 'R POT. 4' com aplicação de Gauss contida em um hiperplano de 'CP POT. 3', isto é 1-degenerada, é completamente descrita por uma fórmula tipo Weierstrass. Este trabalho foi continuado pelos mesmos autores em [23] e [24], onde foram classificadas todas as superfícies em 'R POT. 4' com aplicação de Gauss 1-degenerada. No nosso trabalho, fazemos um estudo paralelo ao de Hoffman e Osserman, para superfícies tipo espaço com aplicação de Gauss 1-degenerada no espaço de Lorentz-Minkowski'L POT. 4' de dimensão 4. Obtivemos resultados similares, porém com maior número de casos, o que se deve essencialmente à geometria de 'L POT. 4'. Também damos uma fórmula de representação tipo Kenmotsu (este tipo de fórmula foi obtido pela primeira vez por K. Kenmotsu em [25] e [26], para superfícies em 'R POT. 3' e 'R POT. 4') para superfícies tipo espaço em 'L POT. 4' com vetor curvatura média não nulo nem de tipo luz. |