Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Nunes, Erick Araujo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3139/tde-01032024-095309/
|
Resumo: |
Este estudo apresenta um sistema para diagnóstico do nível de severidade de falhas de curtocircuito entre espiras do enrolamento do estator de motores de indução trifásicos conectados diretamente à rede. A metodologia adotada baseia-se na informação mútua deslocada para extração de características relevantes entre sinais de corrente elétrica no sistema de referência ortogonal , gerados a partir de medições da corrente de linha de motores de indução trifásicos. Estes dados são submetidos a algoritmos de aprendizado de máquina baseados em redes neurais artificiais do tipo Perceptron multicamadas, SVM e kNN para reconhecimento de padrões associados à ocorrência da falha de curto-circuito e seu respectivo nível de severidade. Para validação do desempenho da metodologia proposta, dados experimentais de dois motores de indução trifásicos são utilizados em testes conduzidos sob diversas condições de operação. |