Detecção de falhas de estator em motores de indução trifásicos utilizando transformada wavelet, medida RMS e potência de previsão
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Cornelio Procopio Brasil Programa de Pós-Graduação em Engenharia Elétrica UTFPR |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/3194 |
Resumo: | The Three-Phase Induction Motor is the most utilized electrical machine in industrial envi- ronments. It is an equipment that shows robust construction, ease maintenance, low cost and reliability. However, frequently, machines are exposed to thermal, electrical and mecha- nical efforts, which, over time, result in a failure. This work aims to analize the stator short circuit fault, one of the most frequent induction motor failures. Therefor, the peculiarities of the signals that are reflected in stator current are investigated, in order to correlate the signal characteristics to the failure in question. Current signals are processed through the Fourier and Wavelet transform in order to analyse short-circuit specific frequencies. Subse- quently, the classification is performed through two artificial neural networks, the multilayer perceptron and the Radial Basis Function. |