Diagnóstico de falhas localizadas de rolamento em motores de indução trifásicos a partir de um modelo matemático
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Cornelio Procopio |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/31011 |
Resumo: | A vasta utilização dos motores de indução trifásicos (MIT) em diversos setores da indústria instiga a busca por técnicas de monitoramento e diagnóstico de defeitos nessas máquinas a fim de evitar paradas na produção e manutenções imprevistas. Dentre os componentes do MIT com mais ocorrências de falhas está o rolamento, cuja detecção de falhas pode ser efetuada por meio da análise do comportamento de algumas variáveis do motor, como vibração e/ou corrente do estator, e sua identificação, a partir de inteligência artificial. Porém, há poucos estudos sobre a modelagem e simulação dessas falhas, as quais se apresentam como um recurso viável para abranger diversos motores e condições específicas de funcionamento, como diferentes níveis de cargas e alimentações. Logo, este trabalho busca elaborar um modelo para simulações de falhas de rolamento no MIT que forneça dados de corrente de uma fase do estator para análise de suas características estatísticas no domínio do tempo e da frequência. A partir dessas informações extraídas de bancos de dados de corrente simulados e obtidos experimentalmente em bancada de teste de motores de 1 e 2 CV, amostras com 23 atributos estatísticos foram submetidas a classificações não-supervisionada (Rede auto-organizável de Kohonen) e supervisionadas (Floresta Aleatória, k-Vizinhos Mais Próximos, Perceptron Multicamadas e Máquina de Vetores de Suporte). As altas taxas de acurácia e 1-score obtidas nas classificações entre motores saudáveis e com falhas podem validar a utilização desse banco de dados artificial atrelado a observações experimentais de modo a tornar mais robusto o diagnóstico de falhas de rolamento executado atualmente. Além disso, os mapas topológicos gerados permitem verificar a proximidade entre amostras simuladas e experimentais quando agrupadas, visto a semelhança entre suas características. Para verificar a capacidade de generalização do modelo proposto, os algoritmos supervisionados foram também treinados e testados com dados simulados de diversas potências de motores, juntamente às amostras experimentais de motores de 1 e 2 CV, obtendo taxas acima de 94,00%. |