Detalhes bibliográficos
Ano de defesa: |
2001 |
Autor(a) principal: |
Arnauts, Teresinha |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24012018-110431/
|
Resumo: |
Nos últimos anos, tem-se dado grande enfoque à resolução de problemas utilizando-se redes neurais artificiais, principalmente devido às suas características de aprendizado e adaptação, generalização, processamento paralelo e distribuído, etc... Pesquisadores também têm proposto o desenvolvimento de sistemas híbridos, que consiste na união de mais de um paradigma, por exemplo, redes neurais, sistemas especialistas e sistemas fuzzy, num mesmo sistema, provendo uma solução melhor para um determinado problema. Neste trabalho, uma técnica para a modelagem de sistemas de produção através dos paradigmas conexionista e fuzzj está sendo proposta. Um sistema de produção neuro. fuzzy, que utiliza esta técnica para a detecção e previsão de falhas na Hidrelétrica de Itaipu, foi desenvolvido. Este sistema, chamado de Sistema de Produção NEUFI (NETJro Fuzzy para a Itaipu), permite a rápida tomada de decisões em emergências e melhor monitoração do sistema Itaipu em situações normais. Para este propósito, uma base de conhecimento baseada em regras, já em uso na operação da Usina pelo sistema R-TESE (Real Time Expert System Environment), foi utilizada como referência inicial. Além disso um simulador, denominado Simulador Neuro-Fuzzj, foi também desenvolvido para facilitar a modelagem das regras. A abordagem proposta, quando comparada com o sistema R-TESE, tem as seguintes vantagens. Primeiro, a incorporação de técnicas de redes neurais dá ao sistema NEUFI maior flexibilidade e fácil manutenção. Segundo, possibilidade de visualizar às regras através de estruturas neurais. Outra vantagem é a redução do número de regras devido a similaridade de algumas delas, que têm seu conhecimento implicitamente representado durante o treinamento da rede. |