SISTEMA PARA TRANSFORMAR TEXTO EM VOZ UTILIZANDOREDES NEURAIS PARA A LINGUA PORTUGUESA.

Detalhes bibliográficos
Ano de defesa: 1996
Autor(a) principal: Prosdocimo, Marcio Zeni
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29082017-164102/
Resumo: Neste trabalho, um sistema para transformar texto na língua portuguesa falado no Brasil em voz é, desenvolvido. O método adotado para a transformação é Texto-Fonema-Voz. Este método tem algumas vantagens: (i) ele cria uma Biblioteca de Voz (BV) para qualquer língua ou para todas, independentemente do mapeamento texto para fonemas; (ii) ele pode interconectar-se com outros sistemas que realizem tarefa semelhante. O uso do sistema Máquina Falante é muito diversificado. As pessoas podem usar facilmente os computadores, porque eles tornam-se mais interativos. A técnica utilizada para mapear texto para fonemas é as Redes Neurais Artificiais (RNA). O uso de RNA tem algumas vantagens sobre técnicas convencionais, como dicionário fonético: (i) a quantidade de informação armazenada pela RNA é menor que a quantidade de informação armazenada pelas outras técnicas; (ii) o usuário não necessita fazer manutenção para novas palavras; (iii) o Perceptron Multi-Camadas tem a característica de generalização. Para uma boa generalização, o conjunto de treinamento deve caracterizar todo o universo de discurso. Para a síntese, nós codificamos a, voz humana pela técnica Waveform. Esta técnica foi escolhida porque é simples e sua característica de qualidade é muito relevante. A BV é um conjunto de informações sobre como o processo de síntese produz fisicamente os fonemas ou grupos de fonemas. Cada arquivo da BV representa uma sílaba. A performance da rede utilizada é de aproximadamente 94% de acerto usando um conjunto de teste que foi construído com palavras diferentes das usadas no treinamento, que é considerado, na área, um bom índice de generalização.