Sistema híbrido: raciocínio baseado em casos e redes neurais

Detalhes bibliográficos
Ano de defesa: 1997
Autor(a) principal: Milaré, Claudia Regina
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19032018-163827/
Resumo: Os processos de recuperação e aprendizado de casos, que exercem um papel fundamental, em sistemas de Raciocínio Baseado em Casos, não são fáceis de serem desenvolvidos. Estes dois processos são bastante dependentes. Os casos devem ser recuperados rapidamente da memória para o sistema de Raciocínio Baseado em Casos ser eficiente. Isto implica em estruturas mais elaboradas para armazenálos, organizá-los e recuperá-los. Quando um conhecimento novo é incorporado ao sistema (aprendizado), a reorganização dos casos na memória torna-se muito complexa devido justamente à estas estruturas. O principal objetivo deste trabalho é a integração de Raciocínio Baseado em Casos e Redes Neurais. Neste trabalho, uma Rede Neural, modelo ART1, é utilizada para auxiliar na recuperação e aprendizado de casos em um sistema de Raciocínio Baseado em Casos.