Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Bedia, Elizbeth Chipa |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/104/104131/tde-12082019-155714/
|
Resumo: |
Dizemos que um grafo e conectado se existe um caminho de arestas entre quaisquer par de vértices. O grafo aleatório de Erdös-Rényi com n vértices e obtido conectando cada par de vértice com probabilidade pn ∈ (0, 1), independentemente dos outros. Neste trabalho, estudamos em detalhe o limiar da conectividade na probabilidade de conexão pn para grafos aleatórios Erdös-Rényi quando o número de vértices n diverge. Para este estudo, revisamos algumas ferramentas probabilísticas básicas (convergência de variáveis aleatórias e Métodos do primeiro e segundo momento), que também irão auxiliar ao melhor entendimento de resultados mais complexos. Além disto, aplicamos os conceitos anteriores para um modelo com uma topologia simples, mais especificamente estudamos o comportamento assintótico da probabilidade de não existência de vértices isolados, e discutimos a conectividade ou não do grafo. Por m mostramos a convergência em distrubuição do número de vértices isolados para uma Distribuição Poisson do modelo estudado. |