Conectividade para um modelo de grafo aleatório não homogêneo

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Sartoretto, Eduardo Zorzo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04102016-145152/
Resumo: A caracterização de redes e o estudo de sistemas, ambos utilizando grafos, é algo muito usado por várias áreas científicas. Uma das linhas deste estudo é denominada de grafos aleatórios, que por sua vez auxilia na criação de modelos para análise de redes reais. Consideramos um modelo de grafo aleatório não homogêneo criado por Kang, Pachón e Rodríguez (2016), cuja construção é feita a partir da realização do grafo binomial G(n; p). Para este modelo, estudamos argumentos e métodos usados para encontrar resultados sobre o limiar de conectividade, importante propriedade relacionada a existência assintótica de vértices e componentes isolados. Em seguida, constatamos algumas características positivas e negativas a respeito da utilização do grafo para modelar redes reais complexas, onde usamos de simulações computacionais e medidas topológicas.