Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Rocha, Joás Elias dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30072018-114107/
Resumo: Este trabalho trata das medidas de máxima entropia para certos difeomorfismos em nilvariedades. Considere um difeomorfismo parcialmente hiperbólico f definido em T3, dinamicamente coerente com folheação central compacta. Suponha ainda que a aplicação induzida por f no espaço das folhas centrais é um homeomorfismo de Anosov transitivo em T2. Mostramos que o conjunto das medidas ergódicas hiperbólicas de máxima entropia é enumerável. Usando o princípio de invariância, mostramos que se o primeiro retorno de f à alguma folha periódica tem número de rotação irracional, então, f tem no máximo duas medidas ergódicas de máxima entropia e ter apenas uma medida de máxima entropia equivale a ser extensão de rotação. Se a aplicação de primeiro retorno à alguma folha central periódica é Morse-Smale, então existe um su-toro periódico, ou temos uma cota superior para o número de medidas ergódicas de máxima entropia que depende do número de atratores da dinâmica nessa folha. Além disso, estudamos a topologia da bacia das medidas ergódicas de máxima entropia para uma outra classe de difeomorfismos especiais que são genéricos no espaço dos difeomorfismos absolutamente parcialmente hiperbólicos e denotada por SPH1(M).