Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Becerra, Richard Javier Cubas |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18112022-191726/
|
Resumo: |
Este trabalho trata sobre a construção e caracterização das medidas de máxima entropia para certos sistemas parcialmente hiperbólicos usando o conceito de medidas Margulis. Consideramos a classe dos difeomorfismos C2 parcialmente hiperbólicos com folheação central uniformemente compacta de dimensão um, sobre uma variedade fechada M, denotada por PHC2c=1(M). Para sistemas f ∈ PHC2c=1(M), supondo que a dinâmica induzida no espaço das folhas centrais é topologicamente transitiva, construímos uma família de medidas ao longo da folheação instável chamadas medidas Margulis e exibimos a sua relação com a desintegração ao longo da folheação instável de medidas de máxima entropia. Usando esta caracterização, quando a folheação instável é dinamicamente minimal provamos que ou f possui uma única medida de máxima entropia a qual é provada ter expoente central zero, ou f possui exatamente duas medidas de máxima entropia ergódicas, as quais são hiperbólicas e com expoente central de sinal oposto. Também estudamos a natureza do suporte das medidas de máxima entropia com expoente central zero para difeomorfismos f ∈ PHC2c=1(M) que são infra-AB-sistemas, e provamos que toda medida de máxima entropia com expoente central zero possui uma sub-variedade compacta e periódica, tangente aos fibrados estável e instável, a qual chamamos de su-folha. Ainda neste contexto, quando o sistema f é topologicamente transitiva, mostramos que f possui no máximo duas medidas de máxima entropia com expoente central nulo. Além disso, para o caso f ∈ PHC2c=1(T3 ) mostramos finitude de medidas de máxima entropia ergódicas usando algumas hipóteses adicionais e aplicando os resultados obtidos. |