Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Montes, Rodrigo Ristow |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-134550/
|
Resumo: |
O objetivo desse trabalho é introduzir um novo invariante geométrico para estudar superfícies imersas em esferas de dimensão ímpar. A partir deste invariante, o ângulo de Contato, determinamos equações para Curvatura Gaussiana e Laplaciano de superfícies mínimas imersas em 'S POT. 2n+1'. Quando a superfície está imersa em 'S POT. 2n+1' definimos o ângulo de holomorfia análogo ao ângulo Kähler. Neste caso, classificamos completamente as superfícies com ambos ângulos constantes fornecendo uma família de toros mínimos imersos em 'S POT. 5'. Pro fim, algumas caracterizações do Toro de Clifford em 'S POT. 3' são apresentadas, sendo esta a única superfície mínima em 'S POT. 3' com ângulo de Contato constante. |