Detalhes bibliográficos
Ano de defesa: |
1997 |
Autor(a) principal: |
Oliveira, Patrícia Rufino |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20032018-141939/
|
Resumo: |
Métodos para extração de características têm como objetivo selecionar, a partir de um conjunto de dados, características que representem informações relevantes ou que sejam básicas para diferenciar uma classe de objetos de outras. Neste trabalho, são apresentadas duas metodologias que podem ser usadas para extração de características. A primeira utiliza métodos estatísticos clássicos como Análise de Componentes Principais (PCA), Análise Discriminante Linear (LDA) e Análise de Cluster. A segunda consiste na utilização de arquiteturas de Redes Neurais Artificiais (RNA) que implementam os mesmos métodos estatísticos. O desempenho dos modelos de RNA apresentados são avaliados, considerando-se a utilização destes na extração de características de um pequeno conjunto de dados e, para investigar a aplicabilidade desses modelos na área de processamento de imagens, uma das redes que implementa PCA é utilizada na tarefa de compressão de algumas imagens médicas. Os resultados obtidos pela rede PCA são comparados com outros provenientes da aplicação da análise PCA clássica e do padrão JPEG (Joint Photographic Experts Group) para o mesmo conjunto de imagens. |