Redes Neurais Artificiais para Extração de Características

Detalhes bibliográficos
Ano de defesa: 1997
Autor(a) principal: Oliveira, Patrícia Rufino
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20032018-141939/
Resumo: Métodos para extração de características têm como objetivo selecionar, a partir de um conjunto de dados, características que representem informações relevantes ou que sejam básicas para diferenciar uma classe de objetos de outras. Neste trabalho, são apresentadas duas metodologias que podem ser usadas para extração de características. A primeira utiliza métodos estatísticos clássicos como Análise de Componentes Principais (PCA), Análise Discriminante Linear (LDA) e Análise de Cluster. A segunda consiste na utilização de arquiteturas de Redes Neurais Artificiais (RNA) que implementam os mesmos métodos estatísticos. O desempenho dos modelos de RNA apresentados são avaliados, considerando-se a utilização destes na extração de características de um pequeno conjunto de dados e, para investigar a aplicabilidade desses modelos na área de processamento de imagens, uma das redes que implementa PCA é utilizada na tarefa de compressão de algumas imagens médicas. Os resultados obtidos pela rede PCA são comparados com outros provenientes da aplicação da análise PCA clássica e do padrão JPEG (Joint Photographic Experts Group) para o mesmo conjunto de imagens.