Estratégias de adaptação de casos para sistemas de raciocínio baseado em casos

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Policastro, Cláudio Adriano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122014-085801/
Resumo: Raciocínio Baseado em Casos é uma metodologia para a resolução de problemas baseado em experiências passadas. Essa metodologia tenta solucionar um novo problema recuperando e adaptando soluções previamente conhecidas de problemas similares. Porém, cada solução recuperada, em geral, requer adaptações para que possa ser utilizada como solução de um novo problema. Portanto, a adaptação de casos é uma característica desejável em sistemas de Raciocínio Baseado em Casos. Um dos maiores desafios da área de RBC é o desenvolvimento de métodos eficientes para a adaptação de casos. Em contraste com a aquisição de casos, o conhecimento para adaptação não é facilmente disponibilizado e é de difícil obtenção (Hanney, 1996; Wiratunga et al., 2002). A forma de adaptação mais utilizada é a codificação de regras de adaptação, demandando um significativo esforço para a aquisição de conhecimento (Hanney, 1996). Uma alternativa para superar as dificuldades associadas à aquisição de conhecimento para adaptação de casos tem sido a utilização de abordagens híbridas e de algoritmos de aprendizado automático para a aquisição do conhecimento utilizado para a adaptação. Este trabalho investiga a utilização de abordagens híbridas para adaptação de casos empregando algoritmos de Aprendizado de Máquina. As abordagens aprendem o conhecimento necessário para a adaptação de casos automaticamente a partir de uma base de casos e aplicam esse conhecimento para realizar a adaptação de soluções recuperadas.