Inferência Bayesiana em Modelos de Volatilidade Estocástica usando Métodos de Monte Carlo Hamiltoniano

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Dias, David de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
LOO
Link de acesso: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-17072019-144803/
Resumo: Este trabalho apresenta um estudo através da abordagem Bayesiana em modelos de volatilidade estocástica, para modelagem de séries temporais financeiras, com o uso do método de Monte Carlo Hamiltoniano (HMC). Propomos o uso de outras distribuições para os erros da equação de observações do modelos de volatilidade estocástica, além da distribuição Gaussiana, para tratar problemas como caudas pesadas e assimetria nos retornos. Além disso, utilizamos critérios de informações, recentemente desenvolvidos, WAIC e LOO que aproximam a metodologia de validação cruzada, para realizar a seleção de modelos. No decorrer do trabalho, estudamos a qualidade do método HMC através de exemplos, estudo de simulação e aplicação a conjunto de dados. Adicionalmente, avaliamos a performance dos modelos e métodos propostos através do cálculo de estimativas para o Valor em Risco (VaR) para múltiplos horizontes de tempo.